Index

A B C D F G I L M P R S T W 
All Classes and Interfaces|All Packages|Serialized Form

A

activate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Conv
 
activate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Dense
 
activate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Flatten
 
activate(Matrix) - Method in class io.github.nearage.jnn.model.Sequential
 
activate(Matrix) - Method in class io.github.nearage.jnn.processing.Layer
Activates the layer for the given input
activate(Matrix) - Method in class io.github.nearage.jnn.processing.Model
Generates an activation for each layer of the model
Activation - Interface in io.github.nearage.jnn.processing
Activation functions
add(Matrix, Matrix) - Static method in interface io.github.nearage.jnn.util.Matrices
Adds matrix b to matrix a
apply(Matrix) - Method in interface io.github.nearage.jnn.processing.Activation
Applies the activation function to the given input
apply(Matrix, Matrix) - Method in interface io.github.nearage.jnn.processing.Loss
Applies the loss function to the given input
apply(Function<Double, Double>) - Method in class io.github.nearage.jnn.input.Matrix
Sets the each value in the matrix to the result of applying the given function to that value
avg() - Method in class io.github.nearage.jnn.input.Matrix
Gets the average value of the matrix

B

biases - Variable in class io.github.nearage.jnn.processing.Layer
Biases of the layer

C

cols - Variable in class io.github.nearage.jnn.input.Matrix
Number of cols
Conv - Class in io.github.nearage.jnn.model.layer
TODO: Convolutional layer
Conv() - Constructor for class io.github.nearage.jnn.model.layer.Conv
Initializes a convolutional layer

D

Dataset - Class in io.github.nearage.jnn.input
TODO: Dataset
Dataset(Matrix[], Matrix[]) - Constructor for class io.github.nearage.jnn.input.Dataset
Initializes a new dataset with the given batches
Dense - Class in io.github.nearage.jnn.model.layer
Dense layer
Dense(int, Activation[]) - Constructor for class io.github.nearage.jnn.model.layer.Dense
Creates a dense layer with the specified neurs and activation function
describe() - Method in class io.github.nearage.jnn.input.Matrix
Prints a description of the matrix
dot(Matrix, Matrix) - Static method in interface io.github.nearage.jnn.util.Matrices
Performs the dot product of two matrices

F

Flatten - Class in io.github.nearage.jnn.model.layer
TODO: Flatten layer
Flatten() - Constructor for class io.github.nearage.jnn.model.layer.Flatten
Initializes a flatten layer
foreach(Consumer<Double>) - Method in class io.github.nearage.jnn.input.Matrix
Performs an action for each element in the matrix

G

generate_sum(int, int, int) - Static method in class io.github.nearage.jnn.input.Dataset
Generates a demonstration dataset as a random matrix of the specified shape, and a target matrix that classifies the values of the sum of each input.
get(int, int) - Method in class io.github.nearage.jnn.input.Matrix
Gets the value at the given index

I

inputs - Variable in class io.github.nearage.jnn.input.Dataset
Input batches
io.github.nearage.jnn.input - package io.github.nearage.jnn.input
 
io.github.nearage.jnn.model - package io.github.nearage.jnn.model
 
io.github.nearage.jnn.model.layer - package io.github.nearage.jnn.model.layer
 
io.github.nearage.jnn.processing - package io.github.nearage.jnn.processing
 
io.github.nearage.jnn.util - package io.github.nearage.jnn.util
 
iterate(BiConsumer<Integer, Integer>) - Method in class io.github.nearage.jnn.input.Matrix
Performs an action for each index in the matrix

L

Layer - Class in io.github.nearage.jnn.processing
Layer
Layer() - Constructor for class io.github.nearage.jnn.processing.Layer
Initializes a layer
layers - Variable in class io.github.nearage.jnn.processing.Model
Layers of the model
load(String) - Static method in class io.github.nearage.jnn.input.Matrix
Loads a matrix from a file in the specified path
Loss - Interface in io.github.nearage.jnn.processing
Loss functions

M

map(BiFunction<Integer, Integer, Double>) - Method in class io.github.nearage.jnn.input.Matrix
Sets the value for each index in the matrix to the result of applying the given function to that index
Matrices - Interface in io.github.nearage.jnn.util
Matrix utils
Matrix - Class in io.github.nearage.jnn.input
Matrix of doubles
Matrix(int, int) - Constructor for class io.github.nearage.jnn.input.Matrix
Creates a new matrix with the specified shape
max() - Method in class io.github.nearage.jnn.input.Matrix
Gets the max value in the matrix
MeanSquaredError - Static variable in interface io.github.nearage.jnn.processing.Loss
Mean Squared Error loss function
min() - Method in class io.github.nearage.jnn.input.Matrix
Gets the min value in the matrix
Model - Class in io.github.nearage.jnn.processing
Model
Model(Layer...) - Constructor for class io.github.nearage.jnn.processing.Model
Creates a model with the given layers
mul(Matrix, Matrix) - Static method in interface io.github.nearage.jnn.util.Matrices
Multyplies matrix a by matrix b

P

peek() - Method in class io.github.nearage.jnn.input.Matrix
Gets the value of the first element
predict(Matrix) - Method in class io.github.nearage.jnn.model.Sequential
 
predict(Matrix) - Method in class io.github.nearage.jnn.processing.Model
Generates output predictions for the input samples
print() - Method in class io.github.nearage.jnn.input.Matrix
Prints every value of the matrix
propagate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Conv
 
propagate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Dense
 
propagate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Flatten
 
propagate(Matrix) - Method in class io.github.nearage.jnn.processing.Layer
Propagates the activation of the layer for the given input

R

randomize(int, int) - Method in class io.github.nearage.jnn.input.Matrix
Randomizes the elements in the matrix within the given bounds, both included
RectifiedLinearUnit - Static variable in interface io.github.nearage.jnn.processing.Activation
Rectified Linear Unit activation function
reduce(double, BiFunction<Double, Double, Double>) - Method in class io.github.nearage.jnn.input.Matrix
Reduces the matrix to a single value, applying the given identity and function
reduce(int, double, BiFunction<Double, Double, Double>) - Method in class io.github.nearage.jnn.input.Matrix
Reduces the matrix along the specified axis, applying the given identity and function
rows - Variable in class io.github.nearage.jnn.input.Matrix
Number of rows

S

save(String) - Method in class io.github.nearage.jnn.input.Matrix
Saves the matrix to a file in the specified path
Sequential - Class in io.github.nearage.jnn.model
Sequential model
Sequential(Layer...) - Constructor for class io.github.nearage.jnn.model.Sequential
Creates a Sequential model with the given layers
set(int, int, double) - Method in class io.github.nearage.jnn.input.Matrix
Sets the given index to the given value
Sigmoid - Static variable in interface io.github.nearage.jnn.processing.Activation
Sigmoid activation function
size - Variable in class io.github.nearage.jnn.input.Matrix
Size of the matrix
Softmax - Static variable in interface io.github.nearage.jnn.processing.Activation
Softmax activation function TODO: Softmax propagation
sub(Matrix, Matrix) - Static method in interface io.github.nearage.jnn.util.Matrices
Substracts matrix b to matrix a
sum() - Method in class io.github.nearage.jnn.input.Matrix
Gets the sum of all values in the matrix
summary() - Method in class io.github.nearage.jnn.input.Matrix
Prints a summary of the matrix
summary() - Method in class io.github.nearage.jnn.model.Sequential
 
summary() - Method in class io.github.nearage.jnn.processing.Model
Prints a string summary of the model

T

targets - Variable in class io.github.nearage.jnn.input.Dataset
Target batches
train(int, Matrix, Matrix, Loss[], double) - Method in class io.github.nearage.jnn.model.Sequential
 
train(int, Matrix, Matrix, Loss[], double) - Method in class io.github.nearage.jnn.processing.Model
Trains the model for a fixed number of epochs
transpose() - Method in class io.github.nearage.jnn.input.Matrix
Transposes the matrix

W

weights - Variable in class io.github.nearage.jnn.processing.Layer
Weights of the layer
A B C D F G I L M P R S T W 
All Classes and Interfaces|All Packages|Serialized Form