Index
All Classes and Interfaces|All Packages|Serialized Form
A
- activate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Conv
- activate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Dense
- activate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Flatten
- activate(Matrix) - Method in class io.github.nearage.jnn.model.Sequential
- activate(Matrix) - Method in class io.github.nearage.jnn.processing.Layer
-
Activates the layer for the given input
- activate(Matrix) - Method in class io.github.nearage.jnn.processing.Model
-
Generates an activation for each layer of the model
- Activation - Interface in io.github.nearage.jnn.processing
-
Activation functions
- add(Matrix, Matrix) - Static method in interface io.github.nearage.jnn.util.Matrices
-
Adds matrix b to matrix a
- apply(Matrix) - Method in interface io.github.nearage.jnn.processing.Activation
-
Applies the activation function to the given input
- apply(Matrix, Matrix) - Method in interface io.github.nearage.jnn.processing.Loss
-
Applies the loss function to the given input
- apply(Function<Double, Double>) - Method in class io.github.nearage.jnn.input.Matrix
-
Sets the each value in the matrix to the result of applying the given function to that value
- avg() - Method in class io.github.nearage.jnn.input.Matrix
-
Gets the average value of the matrix
B
C
- cols - Variable in class io.github.nearage.jnn.input.Matrix
-
Number of cols
- Conv - Class in io.github.nearage.jnn.model.layer
-
TODO: Convolutional layer
- Conv() - Constructor for class io.github.nearage.jnn.model.layer.Conv
-
Initializes a convolutional layer
D
- Dataset - Class in io.github.nearage.jnn.input
-
TODO: Dataset
- Dataset(Matrix[], Matrix[]) - Constructor for class io.github.nearage.jnn.input.Dataset
-
Initializes a new dataset with the given batches
- Dense - Class in io.github.nearage.jnn.model.layer
-
Dense layer
- Dense(int, Activation[]) - Constructor for class io.github.nearage.jnn.model.layer.Dense
-
Creates a dense layer with the specified neurs and activation function
- describe() - Method in class io.github.nearage.jnn.input.Matrix
-
Prints a description of the matrix
- dot(Matrix, Matrix) - Static method in interface io.github.nearage.jnn.util.Matrices
-
Performs the dot product of two matrices
F
- Flatten - Class in io.github.nearage.jnn.model.layer
-
TODO: Flatten layer
- Flatten() - Constructor for class io.github.nearage.jnn.model.layer.Flatten
-
Initializes a flatten layer
- foreach(Consumer<Double>) - Method in class io.github.nearage.jnn.input.Matrix
-
Performs an action for each element in the matrix
G
- generate_sum(int, int, int) - Static method in class io.github.nearage.jnn.input.Dataset
-
Generates a demonstration dataset as a random matrix of the specified shape, and a target matrix that classifies the values of the sum of each input.
- get(int, int) - Method in class io.github.nearage.jnn.input.Matrix
-
Gets the value at the given index
I
- inputs - Variable in class io.github.nearage.jnn.input.Dataset
-
Input batches
- io.github.nearage.jnn.input - package io.github.nearage.jnn.input
- io.github.nearage.jnn.model - package io.github.nearage.jnn.model
- io.github.nearage.jnn.model.layer - package io.github.nearage.jnn.model.layer
- io.github.nearage.jnn.processing - package io.github.nearage.jnn.processing
- io.github.nearage.jnn.util - package io.github.nearage.jnn.util
- iterate(BiConsumer<Integer, Integer>) - Method in class io.github.nearage.jnn.input.Matrix
-
Performs an action for each index in the matrix
L
- Layer - Class in io.github.nearage.jnn.processing
-
Layer
- Layer() - Constructor for class io.github.nearage.jnn.processing.Layer
-
Initializes a layer
- layers - Variable in class io.github.nearage.jnn.processing.Model
-
Layers of the model
- load(String) - Static method in class io.github.nearage.jnn.input.Matrix
-
Loads a matrix from a file in the specified path
- Loss - Interface in io.github.nearage.jnn.processing
-
Loss functions
M
- map(BiFunction<Integer, Integer, Double>) - Method in class io.github.nearage.jnn.input.Matrix
-
Sets the value for each index in the matrix to the result of applying the given function to that index
- Matrices - Interface in io.github.nearage.jnn.util
-
Matrix utils
- Matrix - Class in io.github.nearage.jnn.input
-
Matrix of doubles
- Matrix(int, int) - Constructor for class io.github.nearage.jnn.input.Matrix
-
Creates a new matrix with the specified shape
- max() - Method in class io.github.nearage.jnn.input.Matrix
-
Gets the max value in the matrix
- MeanSquaredError - Static variable in interface io.github.nearage.jnn.processing.Loss
-
Mean Squared Error loss function
- min() - Method in class io.github.nearage.jnn.input.Matrix
-
Gets the min value in the matrix
- Model - Class in io.github.nearage.jnn.processing
-
Model
- Model(Layer...) - Constructor for class io.github.nearage.jnn.processing.Model
-
Creates a model with the given layers
- mul(Matrix, Matrix) - Static method in interface io.github.nearage.jnn.util.Matrices
-
Multyplies matrix a by matrix b
P
- peek() - Method in class io.github.nearage.jnn.input.Matrix
-
Gets the value of the first element
- predict(Matrix) - Method in class io.github.nearage.jnn.model.Sequential
- predict(Matrix) - Method in class io.github.nearage.jnn.processing.Model
-
Generates output predictions for the input samples
- print() - Method in class io.github.nearage.jnn.input.Matrix
-
Prints every value of the matrix
- propagate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Conv
- propagate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Dense
- propagate(Matrix) - Method in class io.github.nearage.jnn.model.layer.Flatten
- propagate(Matrix) - Method in class io.github.nearage.jnn.processing.Layer
-
Propagates the activation of the layer for the given input
R
- randomize(int, int) - Method in class io.github.nearage.jnn.input.Matrix
-
Randomizes the elements in the matrix within the given bounds, both included
- RectifiedLinearUnit - Static variable in interface io.github.nearage.jnn.processing.Activation
-
Rectified Linear Unit activation function
- reduce(double, BiFunction<Double, Double, Double>) - Method in class io.github.nearage.jnn.input.Matrix
-
Reduces the matrix to a single value, applying the given identity and function
- reduce(int, double, BiFunction<Double, Double, Double>) - Method in class io.github.nearage.jnn.input.Matrix
-
Reduces the matrix along the specified axis, applying the given identity and function
- rows - Variable in class io.github.nearage.jnn.input.Matrix
-
Number of rows
S
- save(String) - Method in class io.github.nearage.jnn.input.Matrix
-
Saves the matrix to a file in the specified path
- Sequential - Class in io.github.nearage.jnn.model
-
Sequential model
- Sequential(Layer...) - Constructor for class io.github.nearage.jnn.model.Sequential
-
Creates a Sequential model with the given layers
- set(int, int, double) - Method in class io.github.nearage.jnn.input.Matrix
-
Sets the given index to the given value
- Sigmoid - Static variable in interface io.github.nearage.jnn.processing.Activation
-
Sigmoid activation function
- size - Variable in class io.github.nearage.jnn.input.Matrix
-
Size of the matrix
- Softmax - Static variable in interface io.github.nearage.jnn.processing.Activation
-
Softmax activation function TODO: Softmax propagation
- sub(Matrix, Matrix) - Static method in interface io.github.nearage.jnn.util.Matrices
-
Substracts matrix b to matrix a
- sum() - Method in class io.github.nearage.jnn.input.Matrix
-
Gets the sum of all values in the matrix
- summary() - Method in class io.github.nearage.jnn.input.Matrix
-
Prints a summary of the matrix
- summary() - Method in class io.github.nearage.jnn.model.Sequential
- summary() - Method in class io.github.nearage.jnn.processing.Model
-
Prints a string summary of the model
T
- targets - Variable in class io.github.nearage.jnn.input.Dataset
-
Target batches
- train(int, Matrix, Matrix, Loss[], double) - Method in class io.github.nearage.jnn.model.Sequential
- train(int, Matrix, Matrix, Loss[], double) - Method in class io.github.nearage.jnn.processing.Model
-
Trains the model for a fixed number of epochs
- transpose() - Method in class io.github.nearage.jnn.input.Matrix
-
Transposes the matrix
W
A B C D F G I L M P R S T WAll Classes and Interfaces|All Packages|Serialized Form